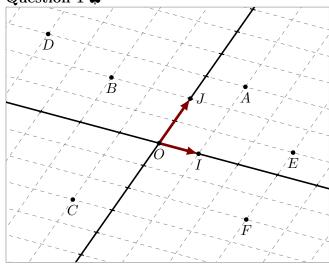
DS nº 2

Durée $\approx 1 \text{ h } 40 \text{min}$

décembre 2021


Complétez l'encadré et codez ci-dessous votre identifiant (classe puis votre numéro d'étudiant à 2 chiffres).

NOM:	\bigcirc 2A \bigcirc 2B \bigcirc 2C
Prénom :	$\bigcirc 0\bigcirc 1\bigcirc 2\bigcirc 3$
email:	$\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc 7 \bigcirc 8 \bigcirc 9$

Aucun document n'est autorisé. L'usage de la calculatrice est autorisé.

Les questions faisant apparaître le symbole & peuvent présenter une ou plusieurs bonnes réponses. Dans ces questions, 2 points seront attribués si toutes les réponses justes sont cochées; des points seront retirés en fonction du nombre de réponses fausses cochées. Les autres, sans le symbole, ont une unique bonne réponse permettant d'attribuer un point.

Question 1 4

Le plan est muni du repère (O; I, J) ci-contre. Cochez les affirmations justes.

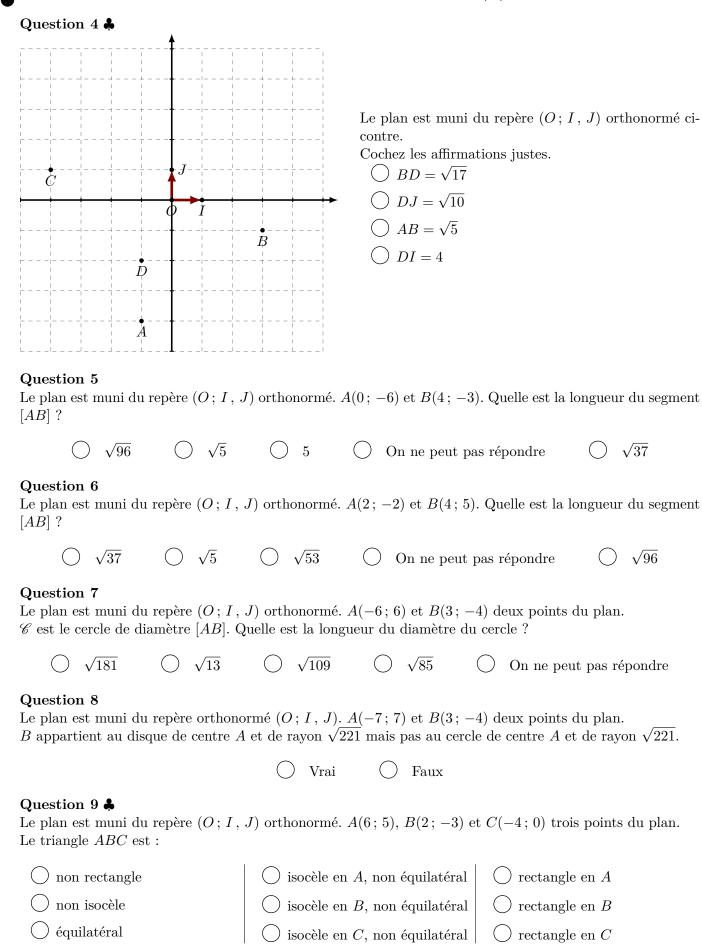
- \bigcirc Le point C a pour coordonnées $\left(-1; -\frac{3}{2}\right)$
- Les points A et D ont la même abscisse
- Le milieu de [BJ] a pour coordonnées (1; 2)
- B a pour coordonnées (-2; 2)
- Le point J a pour coordonnées (0; 2)
- Les points E et F ont la même abscisse

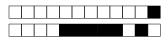
Question 2 &

DARK est un rectangle tel que DA = 2 cm et AR = 1 cm. I est l'intersection des diagonales. Cochez les affirmations justes.

- () Le repère (D; A, R) est orthogonal
- Le repère (I; D, A) est orthonormé
- Les coordonnées de I dans le repère (R; K, A) sont $(\frac{1}{2}; \frac{1}{2})$
- Les coordonnées de A dans le repère (K; I, R) sont (2; 0)
- Les coordonnées de A dans le repère (K; D, R) sont (1; 2)
- Les coordonnées de A dans le repère (I; D, A) sont (0; 2)

Question 3 4


 $R(x_R;y_R)$ et $W(x_W;y_W)$ sont deux points d'un repère orthonormé (O;I,J). Quelle est la longueur du segment [RW]?


$$\bigcirc \sqrt{(x_R - x_W)^2 + (y_R - y_W)^2}$$

$$\bigcirc \sqrt{(x_W - y_W)^2 + (x_R - y_R)^2}$$

$$\bigcirc \sqrt{(x_W-x_R)+(y_W-y_R)}$$

$$(x_W - x_R)^2 + (y_W - y_R)^2$$

Le plan est muni du repère (O; I, J) orthonormé. A(-2; -17), B(10; -8) et C(-11; -5) trois points du plan. Déterminer la nature du triangle ABC. Justifiez soigneusement.

	$\bigcirc 0$	$\bigcirc 1$	$\bigcirc 1.5$	$\bigcirc 2$	$\bigcirc 2.5$	$\bigcirc 3$	$\bigcirc 3.5$	$\bigcirc 4$	Ne rien cocher ici	!

L'ensemble des entiers naturels se note

 \mathbb{Q}

Question 12

L'ensemble qui contient les nombres irrationnels se note

 \bigcirc Q

 \mathbb{R}

 \mathbb{D}

 \mathbb{N}

Question 13

Le plus petit ensemble auquel appartient les nombres 0,245 245 245 ... est ...

() \mathbb{Z}

Question 14 $\frac{\pi}{3} \in \mathbb{Q}$.

Vrai

Faux

Question 15 $-2 \in \mathbb{N}$.

Vrai

Faux

Question 16 $-\frac{\sqrt{25}}{\sqrt{36}} \in \mathbb{Q}$.

Vrai

Faux

Question 17

Soient a et b deux nombres réels. Alors (a - b)(a + b) est égal à ...

 $\bigcap a^2 - b^2$

 $\bigcap a^2 + ab - b^2$

Question 18

La forme factorisée de $x^2 + 6x + 6$ est :

 $\bigcirc (x+3)^2$

On ne peut pas répondre.

(x-3)(x+3) $(x-3)^2$

Question 19

La forme factorisée de $9x^2 - 12x + 4$ est :

On ne peut pas répondre.

 $\bigcirc (3x-2)(3x+2)$

 $(3x+2)^2$

Question 20

La forme factorisée de $4(x+3)^2 - 49$ est :

On ne peut pas répondre.

 $\bigcirc (4x+5)(4x+19)$

 $\bigcirc 4x^2 + 24x - 13$

 $\bigcirc (2x-1)(2x+13)$

- 1) Montrer que $(2 \sqrt{7})^2 = 11 4\sqrt{7}$. 2) En déduire $\sqrt{11 4\sqrt{7}}$.

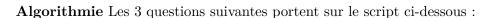
	$\bigcirc 0$	$\bigcirc 0.5$	$\bigcirc 1$	$\bigcirc 1.5$	Ne rien	cocher	ici!

Question 22

ACID est un rectangle tel que $AC = \sqrt{18} - \sqrt{8}$ et $CI = \sqrt{50} - \sqrt{32}$.

- 1) Simplifier en détaillant les expressions AC et CI et montrer que ACID est un carré.
- 2) Montrer que l'aire du rectangle ACID est un entier naturel.

$\bigcirc 0$	0.5	\bigcirc 1	<u>1.5</u>	Ne rien	cocher ici!



On considère l'expression suivante : $P(x) = 2(x-3)^2 - (x-2)(x-3)$. Les calculs devront apparaître. 1) Développer P(x) et montrer que $P(x) = x^2 - 7x + 12$. 2) Calculer P(0), $P(-\sqrt{3})$.

- 3) Factoriser P(x).

	0	<u></u>	<u>1.5</u>	$\bigcirc 2$	2.5	$\bigcirc 3$	3.5	<u></u>	4.5	<u></u>	Ne rien	cocher	· ici !

 $\bigcirc 0$ $\bigcirc 1$ $\bigcirc 1.5$ $\bigcirc 2$ $\bigcirc 2.5$ $\bigcirc 3$ Ne rien cocher ici!


```
from math import sqrt
def racineiteree(n):
    resultat=1
for i in range(n):
    resultat=sqrt(1+resultat)
return resultat
```

Question 24 L'instruction racineiteree(1) retourne une valeur approchée de...

 $\bigcirc \quad \sqrt{1} \qquad \bigcirc \quad \sqrt{2} \qquad \bigcirc \quad \sqrt{1+\sqrt{2}} \qquad \bigcirc \quad 1+\sqrt{2}$

Question 25 L'instruction racineiteree(2) retourne une valeur approchée de...

 $\bigcirc \quad \sqrt{2} \qquad \bigcirc \quad 1 + \sqrt{2} \qquad \bigcirc \quad \sqrt{1 + \sqrt{1 + \sqrt{2}}}$

Question 26 L'instruction racineiteree(3) retourne une valeur approchée de...

 $\bigcirc \quad \sqrt{3} \qquad \bigcirc \quad \sqrt{1+\sqrt{3}} \qquad \bigcirc \quad \sqrt{1+\sqrt{1+\sqrt{3}}} \qquad \bigcirc \quad \sqrt{1+\sqrt{1+\sqrt{2}}}$

Question 27

- 1) Que retourne les instructions 6%3 ? 7%3 ? 8%3 ?
- 2) Que teste l'instruction a%b==0 ?
- 3) Compléter le script suivant pour que la fonction rentourne True si l'argument n est premier, et False dans le cas contraire.

```
1 def premier(n):
2    resultat = True ;
3    for i in ....
4        if ...
5         resultat=False
6    return resultat
```

•

